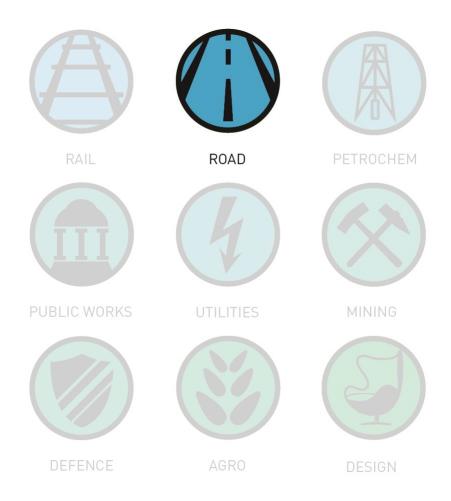
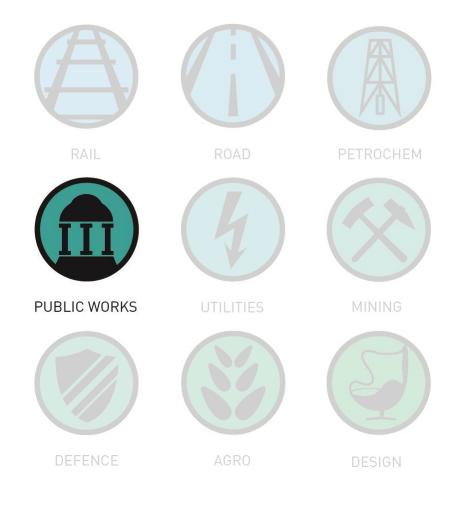
CONCRETE CANVAS®

Concrete Impregnated Fabric



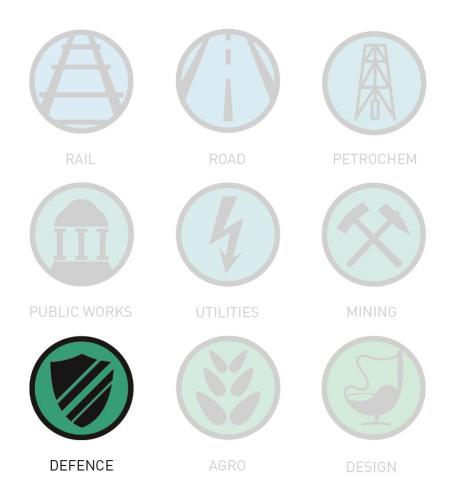
Erózna ochrana svahov, Parla, Spain

Erózna ochrana svahov, Oman



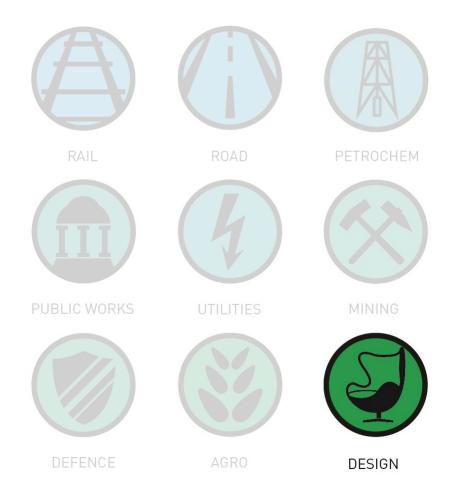
Opláštenie bariér zberných a havarijných nádrží, UK

Oprava vodných kanálov, Scottish Power, UK



Výstielka kanálov a drenážných línií, Myra Falls, Canada

CCS betónové nafukovacie úkryty, Europe



Bellavista zavlažovacie kanálové systémy, Chile

"Zošitý betón", Florian Schmid, Germany

Example End Users

United

SEVERN

TRENT

CC UK CUSTOMERS

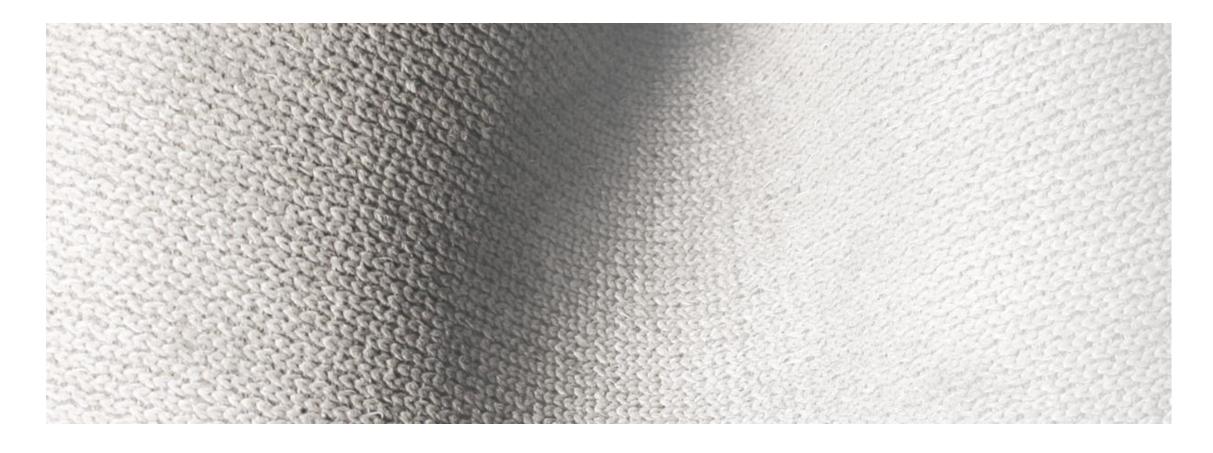
Consultant Engineers / Contractors

carillion

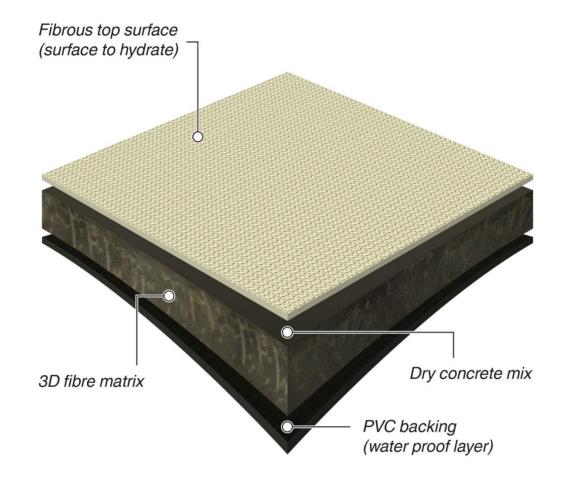
Mott MacDonald

BUCKINGHAM Group Contracting

SUMITOMO METAL MINING CO., LTD.


CONCRETE CANVAS

Geosynthetic Cementitious Composite Mat (GCCM): a factory assembled geosynthetic composite consisting of a cementitious layer contained within layer or layers of geosynthetic materials. The cementitious portion of the GCCM becomes hardened when properly hydrated after a certain amount of time, which is recorded when known.


WHAT IS CONCRETE CANVAS (CC)?

Concrete Canvas (CC) je flexibilná betónom impregnovaná tkanina, ktorá tvrdne po hydratácii a tvorí tenkú ,trvácnu a vode odolnú betónovú vrstvu.

Concrete Canvas (CC) sa skladá:

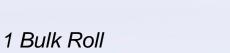
- Vláknitá hydratačná vrchná vrstva
- Štruktúrovaná vláknitá matrica 3D
- Suchá cementová zmes
- Vodo nepriepustná PVC vrstva

CC DELIVERY FORMATS

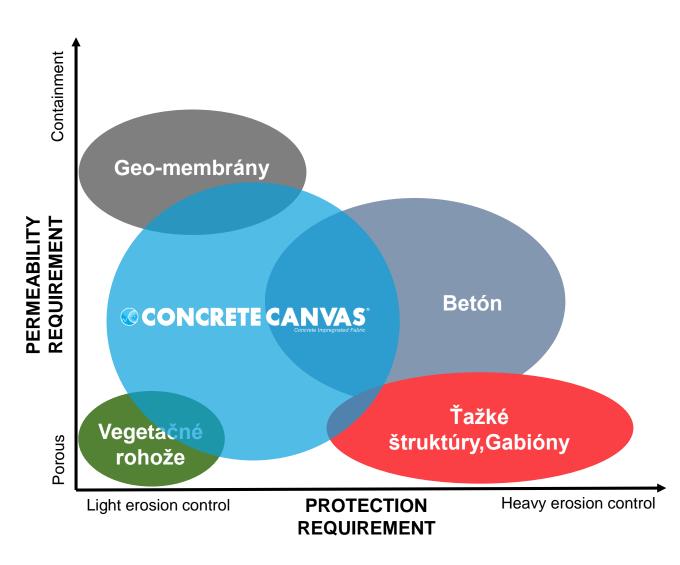
CC je dodávaný v troch formátoch:

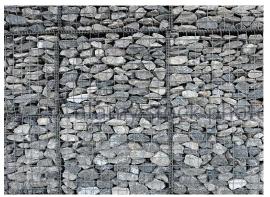
Up to 200sqm of concrete on a single pallet

Man portable batched rolls of 5 or 10sqm


Available in 2, 3 and 4m widths

2 x 17T Ready-mix Trucks





CC technické špecifikácie

СС	Hrúbka (mm)	Balený zvitok (m2)	Veľký zvitok (m2)	Zvitok šírka(m)
CC5	5	10	200	1.0
CC8	8	5	125	1.1
CC13	13	N/A	80	1.1

CC	Váha () (kg/m²)	Hustota(pred hydratáciou) (kg/m³)	Hustota po hydratácii (set) (kg/m³)
CC5	7	1500	+30-35%
CC8	12	1500	+30-35%
CC13	19	1500	+30-35%

Spôsob hydratácie

Postriekajte vláknitú vrchnú vrstvu vodou a namočte CC tak aby bol premočený aj niekoľko minút po hydratácii.

Opakujte hydratáciu CC po uplynutí jednej hodiny ak :

- Inštalujete CC5™
- Inštalujete na prudkom svahu alebo vertikálne

Upozornenie:

- Odporúča sa intenzívne prehydratovať materiál. CC sa môže hydratovať aj pod vodou alebo aj morskou vodou. Viac vody neškodí ale zlepšuje hydratačný proces.
- CC sa musí hydratovať aktívne. Nespoliehajte sa na dážď alebo iné prírodne hydratácie (topenie snehu, atmosférická vlhkosť ,atď.).
- Použite ružicu na postrek vody (vid CC zoznam nástrojov). Nehýbte s materiálom a nechoďte po ňom do vytvrdnutia.
- Čas tvrdnutia je redukovaný v teplých prostrediach a predĺžený vo veľmi chladných prostrediach.
- CC bude vytvrdnutý počas 24 h a jeho pevnosť sa ďalej vylepší v priebehu času.
- Ak CC nie je dostatočne hydratovaná, alebo vyschne počas prvých piatich hodinách, pevnosť materiálu bude redukovaná. Ak je hydratácia prerušená nehýbte s materiálom a zopakujte hydratáciu.

Pozri: Concrete Canvas Hydration Guide for installation in low temperatures or drying conditions.

- Nízke teploty sú ak prízemná teplota je v rozsahu 0 až 5°C and alebo sa očakáva pokles pod 0°C počas 8 h po hydratácii.
- Za teplé rýchloschnúce prostredie sa považuje ak: teplota je (>22°C), rýchlosť vetra (>12km/h), priame slnečné žiarenie alebo nízka vlhkosť (<70%).

CC Technické špecifikácie

CC Vlastnosti

Hydratačná fáza

Pracovný čas počas ktorého je možné CC upravovať

1-2 h podľa teploty

CC dosiahne 80% pevnosť po 24 h po hydratácii .

Pevnost'

Veľmi vysoká pevnosť počas 24 h je základná charakteristika CC.

Typická pevnosť je nasledovná:

Pevnost' na tlak tests based on ASTM C109 – 02 (initial crack)

- 10 day compressive failure stress (MPa)

40

Pevnosť na ohyb tests based on BS EN 12467:2004 (initial crack)

- 10 day bending failure stress (MPa)

3.4

Pevnosť v ťahu data (Initial crack)

	Length direction	Width direction
CC5	6.7	3.8
CC8	8.6	6.6
CC13	19.5	12.8

Reaction to fire

CC has achieved **Euroclass B certification**:

BS EN 13501-1:2007+A1:2009

B-s1, d0

Flame Resistance : MSHA ASTP-5011 Vertical and Horizontal Certification	Passed
Vertical and Fiorizontal Certification	1 83360
Age Testing (minimum 50 year expected life) Freeze-thaw testing (ASTM C1185) Freeze-thaw testing (BS EN 12467:2004 part 7.4.1) Soak-Dry testing (BS EN 12467:2004 part 5.5.5) Heat-Rain testing (BS EN 12467:2004 part 5.4.4) Water impermeability (BS EN 12467:2004 part 5.4.4)	200 Cycles Passed Passed Passed Passed**
Other	
Abrasion Resistance (ASTM C-1353) Approximately 7.5x greater than 17MPa OPC	Passed
Manning's Value	n = 0.011
Root Resistance (DD CEN/TS 14416:2005)	Passed
 Chemical Resistance (BS EN 14414) Acid (pH 1.0) (56 day immersion at 50°C) Alkaline (pH 13.0) (56 day immersion at 50°C) Hydrocarbon (56 day immersion at 50°C) Sulfate Resistance (28 day immersion at pH 7.2) 	Passed Passed Passed Passed
Impact Resistance of Pipeline Coatings ASTM G13 (CC13™ only)	Passed
Permissible Shear & Velocity CC8™ (ASTM D-6460) - Shear (Pa) - Velocity (m/s)	1200 10.7

Pre-Set CC Properties

Setting

Working Time

1-2 hours subject to ambient temperature CC will achieve 80% strength at 24 hours after hydration

Post Set CC Properties

Based on CC hydrated in accordance with the CC Hydration Guide.

Strength

Very high early strength is a fundamental characteristic of CC. Typical strengths and physical characteristics are as follows:

Compressive tests based on ASTM C109 – 02 (initial crack)

- 10 day compressive failure stress (MPa)

Bending tests based on BS EN 12467:2004 (initial crack)

- 10 day bending failure stress (MPa)

Tensile data (Initial crack)

Reaction to fire

CC has achieved Euroclass B certification:

BS FN 13501-1-2007+A1-2009

B-s1. d0

40

Pre-Set CC Properties

Setting

Working Time

1-2 hours subject to ambient temperatureCC will achieve 80% strength at 24 hours after hydration

Post Set CC Properties

Based on CC hydrated in accordance with the CC Hydration Guide.

Strength

Very high early strength is a fundamental characteristic of CC. Typical strengths and physical characteristics are as follows:

Compressive tests based on ASTM C109 – 02 (initial crack)

10 day compressive failure stress (MPa)

- 10 day bending failure stress (MPa)

Tensile data (Initial crack)

Reaction to fire

CC has achieved Euroclass B certification:

BS FN 13501-1-2007+A1-2000

B-s1, d0

Age Testing (minimum 50 year expected life)

Other

Abrasion Resistance (ASTM C-1353)	
Approximately 7.5x greater than 17MPa OPC	

Manning's Value n = 0.011

Root Resistance (DD CEN/TS 14416:2005) Passed

Chemical Resistance (BS EN 14414)

Impact Resistance of Pipeline Coatings

ASTM G13 (CC13™ only)

Permissible Shear & Velocity CC8™ (ASTM D-6460

Passed

Pre-Set CC Properties

Setting

Working Time

1-2 hours subject to ambient temperatureCC will achieve 80% strength at 24 hours after hydration

Post Set CC Properties

Based on CC hydrated in accordance with the CC Hydration Guide.

Strength

Very high early strength is a fundamental characteristic of CC. Typical strengths and physical characteristics are as follows:

Compressive tests based on ASTM C109 – 02 (initial crack)

- 10 day compressive failure stress (MPa)

40

Bending tests based on BS EN 12467:2004 (initial crack)

- 10 day bending failure stress (MPa)

3.4

Tensile data (Initial crack)

Reaction to fire

CC has achieved Euroclass B certification:

BS FN 13501-1-2007+A1-2000

B-s1, d0

Tame Resistance : MSHA ASTP-5011

Passed

Age Testing (minimum 50 year expected life)

Freeze-thaw testing (ASTM C1185)	200 Cycles
Freeze-thaw testing (BS EN 12467:2004 part 7.4.1)	Passed
Soak-Dry testing (BS EN 12467:2004 part 5.5.5)	Passed
Heat-Rain testing (BS EN 12467:2004 part 5.4.4)	Passed
Water impermeability (BS EN 12467:2004 part 5.4.4)	Passed**

Othe

Abrasion Resistance (ASTM C-1353)
Approximately 7.5x greater than 17MPa OPC

Passed

Manning's Value

Root Resistance (DD CEN/TS 14416:2005)

Passed

Chemical Resistance (BS EN 14414)

Passed

Impact Resistance of Pipeline Coatings

ASTM G13 (CC13 TM only)

rass

Permissible Shear & Velocity CC8™ (ASTM D-6460

Pre-Set CC Properties

Setting

Working Time

1-2 hours subject to ambient temperature CC will achieve 80% strength at 24 hours after hydration

Post Set CC Properties

Based on CC hydrated in accordance with the CC Hydration Guide.

Strength

Very high early strength is a fundamental characteristic of CC. Typical strengths and physical characteristics are as follows:

Compressive tests based on ASTM C109 – 02 (initial crack)

10 day compressive failure stress (MPa)

Bending tests based on BS EN 12467:2004 (initial crack)

- 10 day bending failure stress (MPa)

Tensile data (Initial crack)

Reaction to fire

CC has achieved Euroclass B certification:

BS FN 13501-1-2007+A1-2009

B-s1 d0

Chemical Resistance (BS EN 14414) - Acid (pH 1.0) (56 day immersion at 50°C) - Alkaline (pH 13.0) (56 day immersion at 50°C) - Hydrocarbon (56 day immersion at 50°C) - Sulfate Resistance (28 day immersion at pH 7.2)	Passed Passed Passed Passed

Core Applications

Channel lining

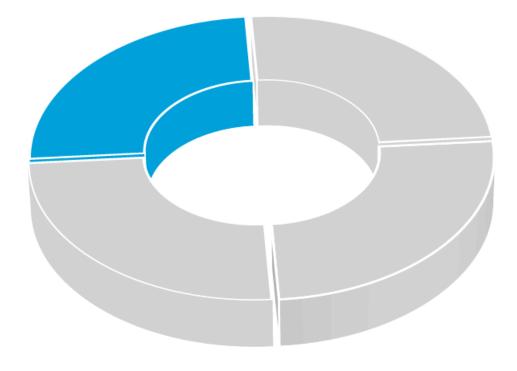
Slope protection

Bund lining

Concrete remediation

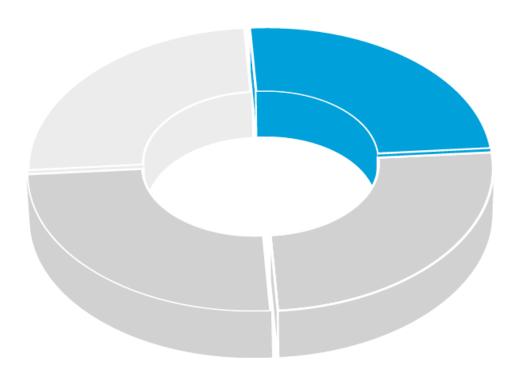
Other

- Weed suppression
- Culvert repair
- Gabion reinforcement
- Pipe protection
- Mining vent / blast walls
- Cable covering / protection


CC KEY BENEFITS

Rapid install

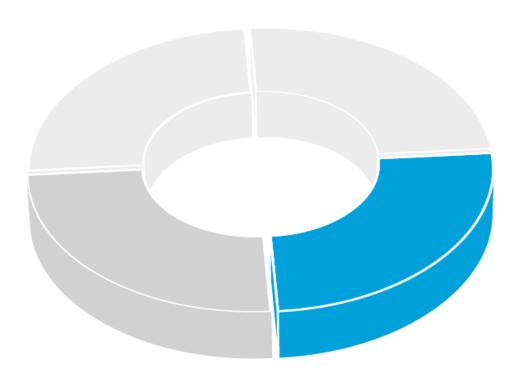
Up to 10X faster than conventional concrete
Up to 200 linear M/hour


CC KEY BENEFITS

Rapid install

Up to 10X faster than conventional concrete Up to 200 linear M/hour

Easy to use
Low logistical footprint / Safe
Minimal training required
Install in adverse conditions


CC KEY BENEFITS

Rapid install

Up to 10X faster than conventional concrete Up to 200 linear M/hour

Easy to use
Low logistical footprint / Safe
Minimal training required

Low project cost
More cost effective than any other
conventional concrete solution

Lining Materials	Materials (£/sqm)	Labour & Plant (£/sqm)	Total inc. o/heads (£/sqm)	Installation Time (sqm/day)
In situ Concrete	£16.02	£18.13	£42.25	40
Precast Concrete Paving Slabs	£19.76	£12.98	£40.51	40
Sprayed Concrete	£42.53	£4.84	£58.61	130
Concrete Canvas CC8	£29.40	£0.99	£37.60	412

Concrete Canvas (CC) is typically 10x faster and 20% less expensive than conventional concrete.

*Source: Report compiled by Engineers Incorporated Ltd of Cardiff 2011

CC KEY BENEFITS

Rapid install

Up to 10X faster than conventional concrete Up to 200 linear M/hour

Eco friendly
Material savings up to 90%
Transport efficient
Low wash out rate
Low alkaline reserve

Easy to use
Low logistical footprint / Safe
Minimal training required

Low project cost
More cost effective than any other
conventional concrete solution

Methods

Screws - stainless at 200mm centres

Strength ***
Impermeability *

Adhesive sealant - double bead of Clearfix

Strength ***
Impermeability **

Notes

- Overlap CC by a minimum of 100mm in the direction of water flow.
- Hydrate material under overlap prior to jointing.

Screws & Sealant - single bead of Clearfix

Strength ***
Impermeability *

Grout - CC can supply approved mix

Strength ****
Impermeability ****

Methods

To soil

Pegs

Anchor Trench

Soil Nails / Ground Anchors

To concrete

Mortar

Masonry Fixings

To other

Rock Bolts

Hogs Rings

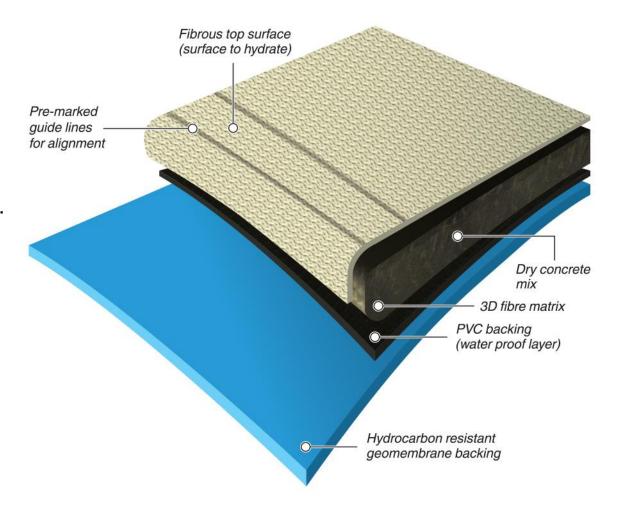
Tech Screws

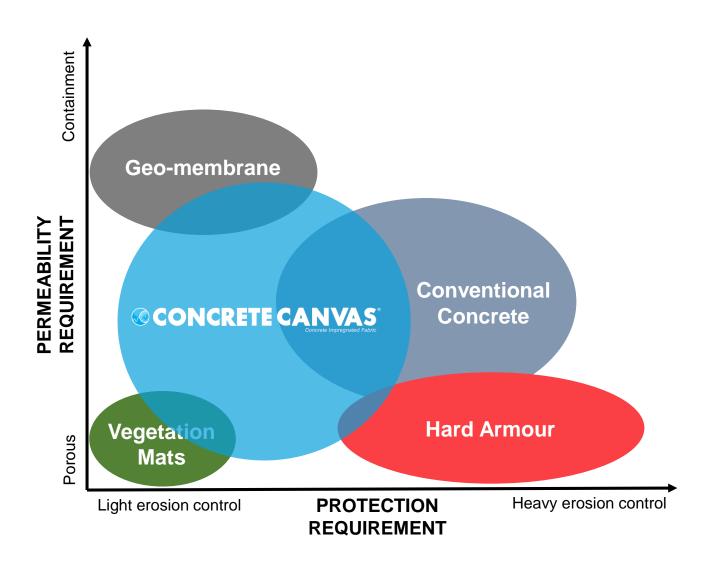
Notes

- Essential to prevent water undermining CC along exposed edges
- Ensure material is in intimate contact with the ground avoid voids

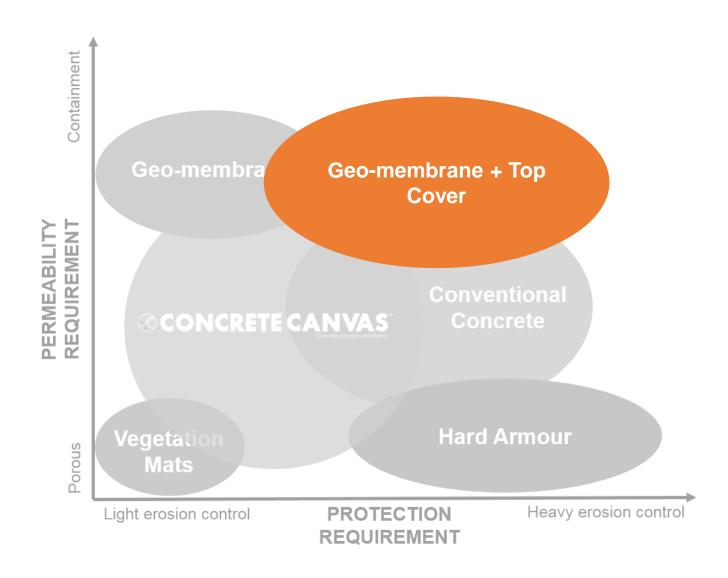
CONCRETE CANVAS®

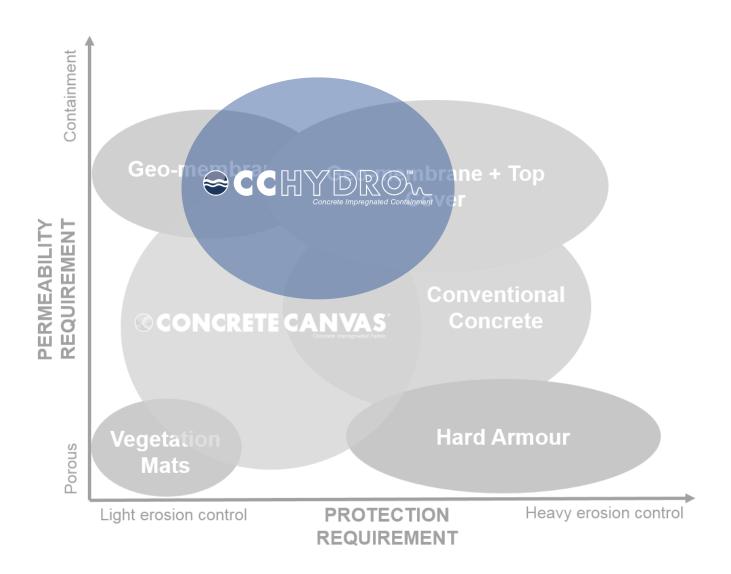
Concrete Impregnated Fabric

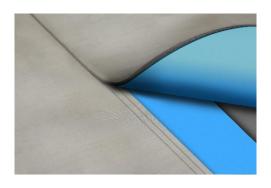


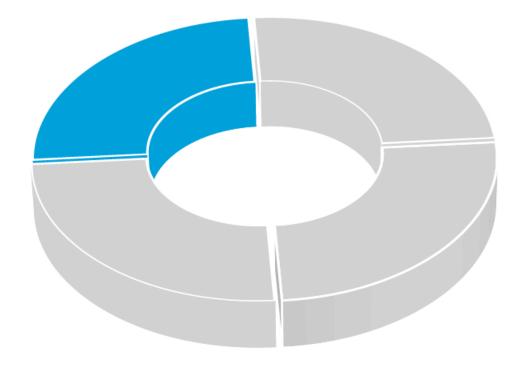

CC Hydro™ combines the company's concrete impregnated fabric technology with a high impermeability, chemically resistant geomembrane liner, which allows joints to be thermally bonded for on-site air channel testing.

- CC's concrete impregnated fabric technology.
- Chemically resistant geomembrane backing.
- Providing impermeability of $k = 1x10^{-12} \text{m/s}$ for containment.
- High visibility welding strip allowing for testable joints.



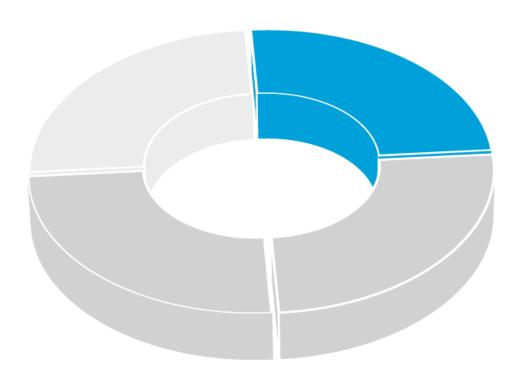






All in one solutionImpermeability of conventional concrete

Durability and protection of concrete

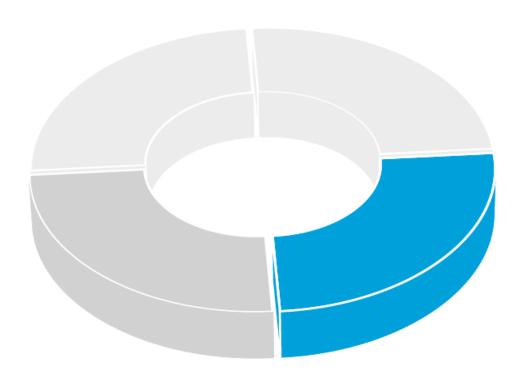


All in one solution

Impermeability of conventional concrete Durability and protection of concrete

No top cover No additional excavation No contaminated arisings

No costly import of fill



All in one solution

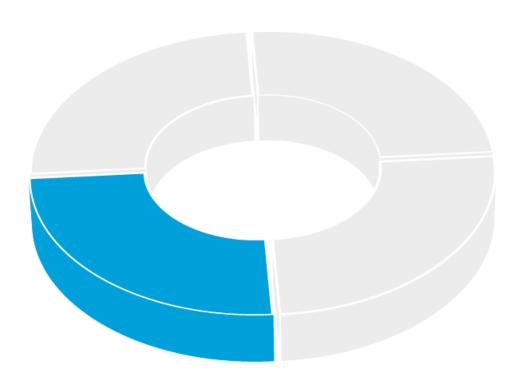

Impermeability of conventional concrete Durability and protection of concrete

No top cover No additional excavation

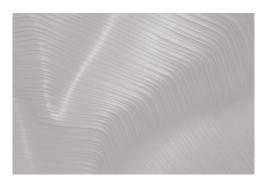
No contaminated arisings No costly import of fill

Life cycle costs Weed suppression No contaminated fill

All in one solution


Impermeability of conventional concrete

Durability and protection of concrete

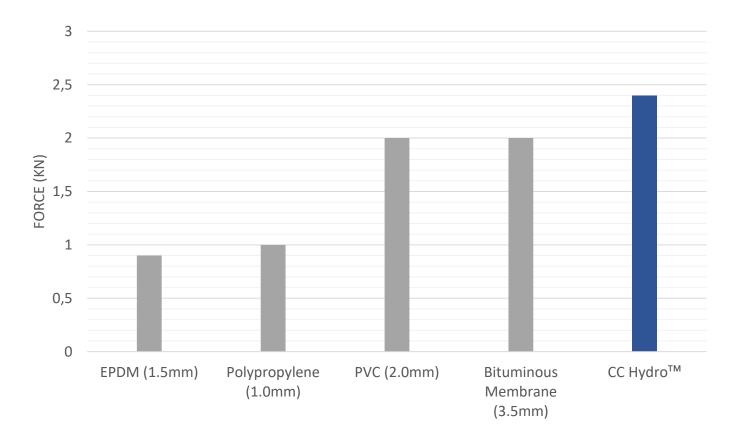


Maintain volume capacity Installed directly onto existing Infrastructure for refurbishment

No top cover
No additional excavation
No contaminated arisings
No costly import of fill

Life cycle costsWeed suppression
No contaminated fill

High Impermeability


	Permeability (m/s)		
Water	7.5x10 ⁻¹³		
Diesel	1.6x10 ⁻¹²		
Welded Joint	8.1x10 ⁻¹²		

Durable

Comparison of published puncture resistance values for a variety of common geosynthetic membranes

According to BS ISO 12236:2006 Geosynthetics – Static Puncture Test (CBR Test)

CC HYDRO™ KEY PROPERTIES

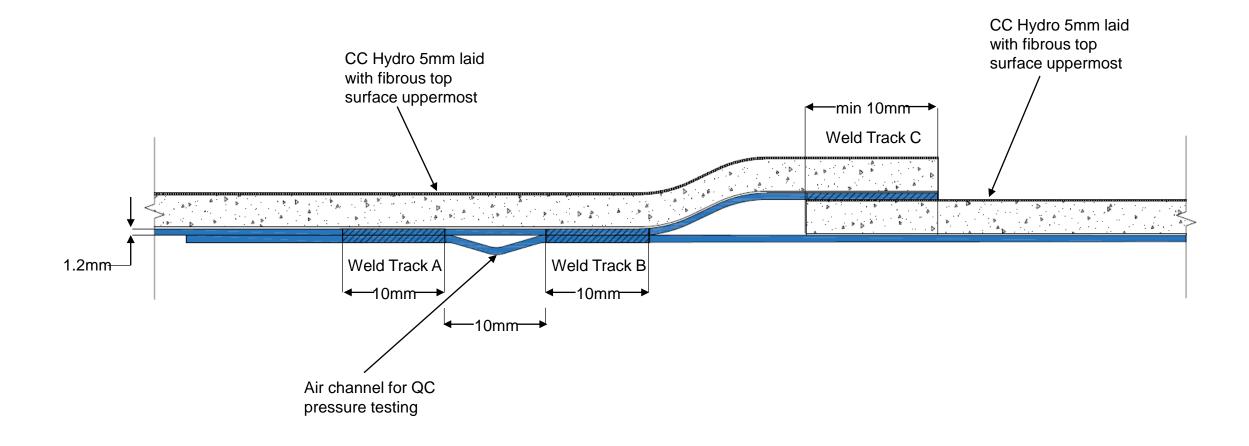
Chemical Resistance

	CC Hydro™	Polypropylene	HDPE	PVC	Bitumenous Membrane
Acid▲	A/A	A/A	A/A	A/A	A/A
Diesel	B/B	B/X	A/A	B/X	X/X
Digestate	A/A	A/A	A/A	A/A	A/A
Ethanol	A/A	A/A	A/A	A/A	A/B
FAME (Biodiesel)	A/B	B/X	B/B	X/X	X/X
Leachate	A/A	A/A	A/A	A/A	A/A
Paraffin (Kerosene)	A/B	B/X	B/X	B/X	X/X
Petrol (Gasoline)	A/B	X/X	B/B	X/X	X/X
Sewage [∆]	A/A	A/A	A/A	A/A	A/A

24 hour / 28 day

Rating Key

- A Fluid has little or no effect
- B Fluid has minor or moderate effect
- C Fluid has severe effect


▲0.1 M H₂SO₄ pH1.2

△Synthetic according to OECD 303

CC Hydro[™] thermally welded overlap joint

CC Hydro[™] GCCM Physical Properties

Product	Concrete Thickness (mm)	Bulk Roll Size (sqm)	Roll Width (m)
CCH5™	5	150	1.0
CCH8™	8	100	1.0

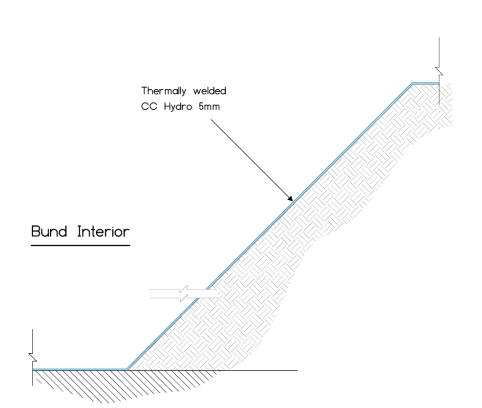
Product	Mass (unset) (kg/m²)	Density (unset) (kg/m³)	Density (set) (kg/m³)
CCH5™	9.2	1500	+30-35%
ССН8™	14.2	1500	+30-35%

CC HYDRO™ APPLICATIONS

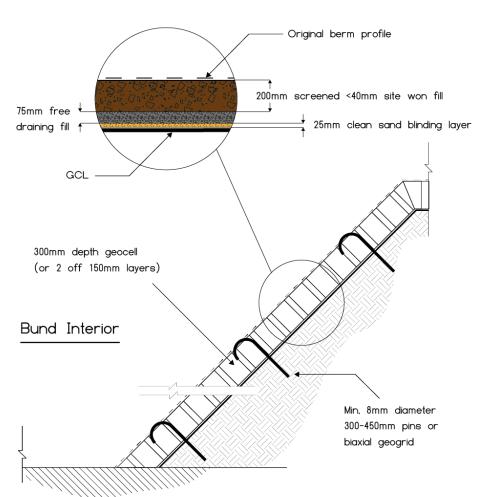
Core Applications

Bund lining

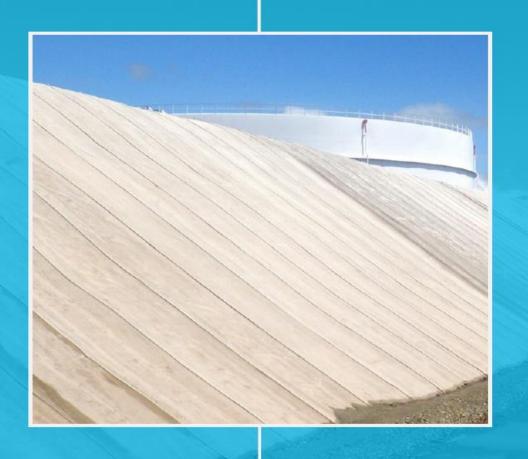
Channel lining



Lagoon lining



Detail A - Typical CC/CC Hydro lined bund section


Not to scale.

Detail B - Typical GCL/Geocell lined bund section

Not to scale.

CC HYDRO BERM LINING

CONCRETE CANVAS®

Concrete Impregnated Fabric

WHAT ARE CC SHELTERS (CCS)?

Concrete Canvas Shelters (CCS) are rapidly deployable hardened shelters that require only water and air for construction.

CCS have two major advantages over conventional tented shelter:

Operational: CCS enable a hardened structure from day one of an operation. They provide much better environmental protection, increased security and vastly improved medical capability.

Financial: CCS have a design life of over 10 years, whereas tents wear out rapidly and must then be replaced. CCS are a one stop solution, saving effort and cost over the lifetime of medium to long term operations.

Delivery

CCS are supplied folded in polyethylene, airtight, water and rot proof acks within ISPM15 heat treated timber/ply panel crates.

Inflation

An electric fan is activated which inflates the plastic inner to lift the structure until it is self supporting. The shelter is then pegged down with ground anchors around the base.

Hydration

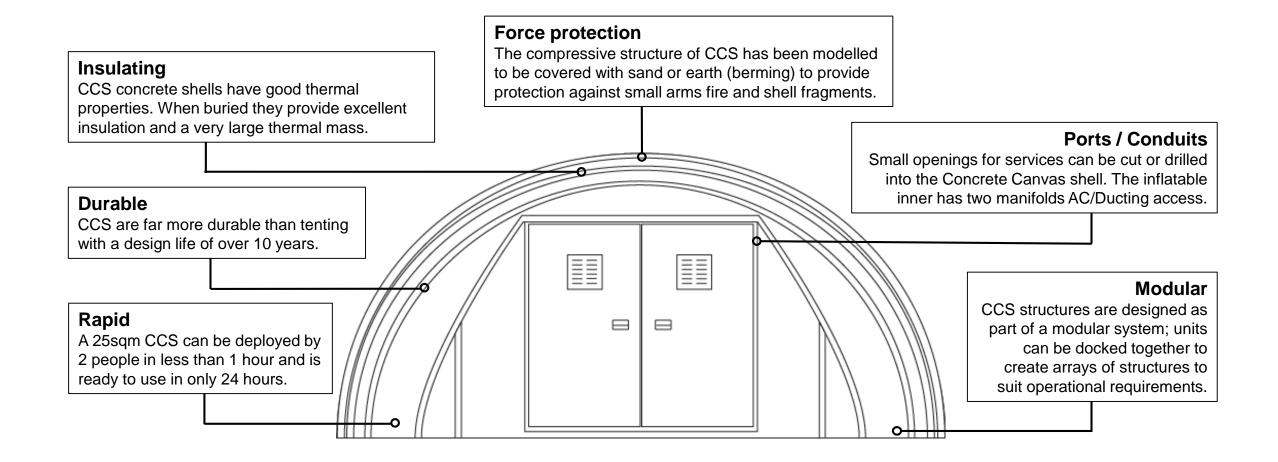
The CCS is then hydrated by spraying with water. Water does not need to be potable and sea water may be used.

Setting

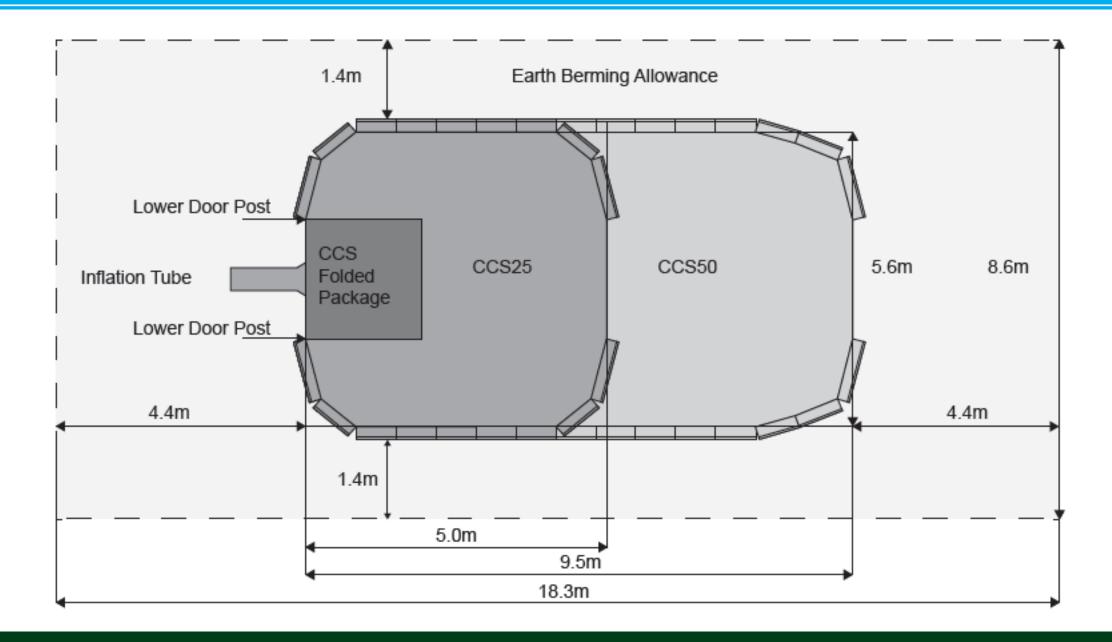
The Concrete Canvas cures in the shape of the inflated inner and 24 hours later the structure is ready to use. Access holes can be cut to allow the installation of services.

Earth Berming

CCS structures have been modelled to withstand a very high distributed compressive load, enabling berming by sandbags, local fill material or snow. This gives the shelters excellent thermal properties and can provide protection against shrapnel, blasts and small arms fire. The above shows CCS buried using a cellular geo-textile product to provide force protection.

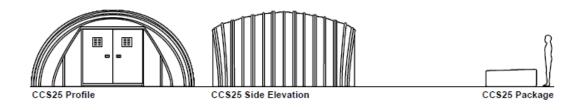


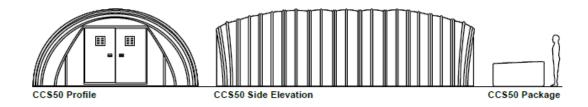
Earth Berming


CCS structures have been modelled to withstand a very high distributed compressive load, enabling berming by sandbags, local fill material or snow. This gives the shelters excellent thermal properties and can provide protection against shrapnel, blasts and small arms fire. The above shows CCS buried using a cellular geo-textile product to provide force protection.

Pre-deployment (Crate) dimensions				
Unit Length Width (m) (m)		Height (m)	Weight (kg)	
CCS25	2.61	2.30	1.13	1900
CCS50	2.90	2.24	1.70	3100

General Specification			
Unit	Water Requirement (L)	Width (m)	Height (m)
CCS25	1000	6022	4-6
CCS50	2000	120	8-10





CCS KEY PROPERTIES

Post-deployment dimensions				
Unit	Length (m)	Width (m)	Height (m)	Weight (kg)
CCS25	5.00	5.60	2.45	25.00
CCS50	9.50	5.60	2.60	50.00

Lee Church

Technical Sales (UK South)

lee.church@concretecanvas.com

Office: 0345 680 1908

Mobile: +44(0)792 181 3592

CC Installation

- CC 4 Principles
- CC Channel Lining Animation (Web)
- CC Speed Trial Demonstration (Web)

CC Technical Material Properties

- CC Flow Rates / Flume Testing
- CC Mannings Testing
- CC Chemical Resistance
- CC Rockfall Impact Testing
- CC Biogenic Corrosion
- CC Logistical Footprint
- CC Compressive Strength
- CC Tensile Strength
- CC Flexural Strength
- CC Puncture Resistance
- CC CO2 Data

CC Certification

- CC CE Certification : BS EN 12467:2004
- CC Fire Certification

Miscellaneous

- CC Production Rates / Capacity

CC WEIGHTS AND DIMENSIONS

Compressive Strength (N/mm2)

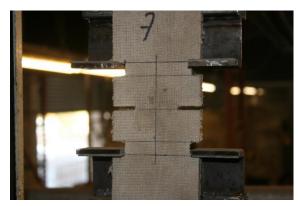
ASTM C109 Cube Test = **40MPa**

a) Resistencia a la compresión

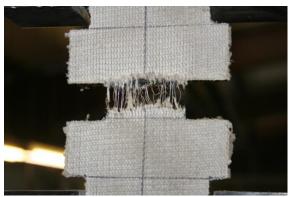
Probeta N°	Edad (días)	Densidad (kg/m³)	Carga (kN)	Resistencia a la compresión en probetas cúbicas de 5 cm (MPa)	
			, ,	Probeta	Promedio
1	1	2.180	129	49,6	49,2
2	1	2.170	127	48,8	49,2
3	3	2.170	143	55,0	55,4
4	3	2.170	145	55,8	33,4
5	7	2.160	158	60,8	59,3
6	7	2.160	150	57,7	39,3

Bending Strength of 3.4 MPa (N/mm2)

BS EN 12467 Based on In-house testing 3-point bend test

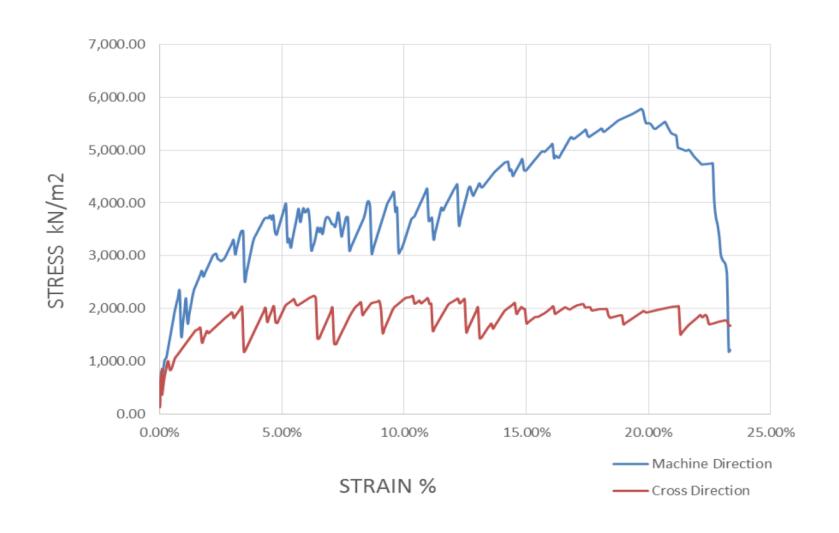


Tensile Strength (first crack)


	Length direction (kN/m)	Width direction (kN/m)
CC5	6.7	3.8
CC8	8.6	6.6
CC13	19.5	12.8

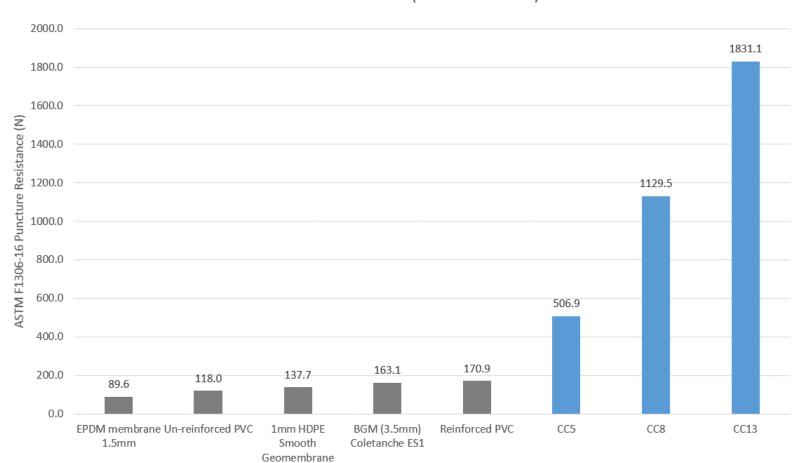
Cured sample size of 300x100mm.

Two 25mm horizontal slots cut on either side of specimen to reduce test width to 50mm. Tensile test machine run at 50mm/ minute.

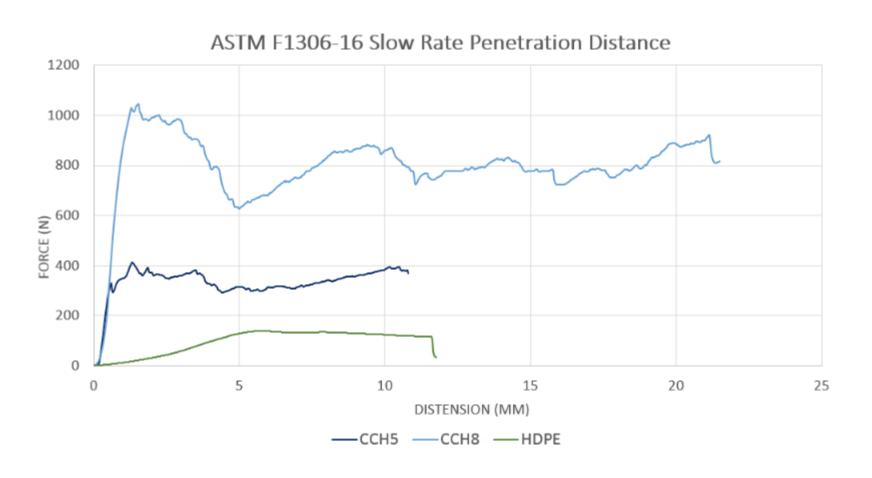


Flexural Strength

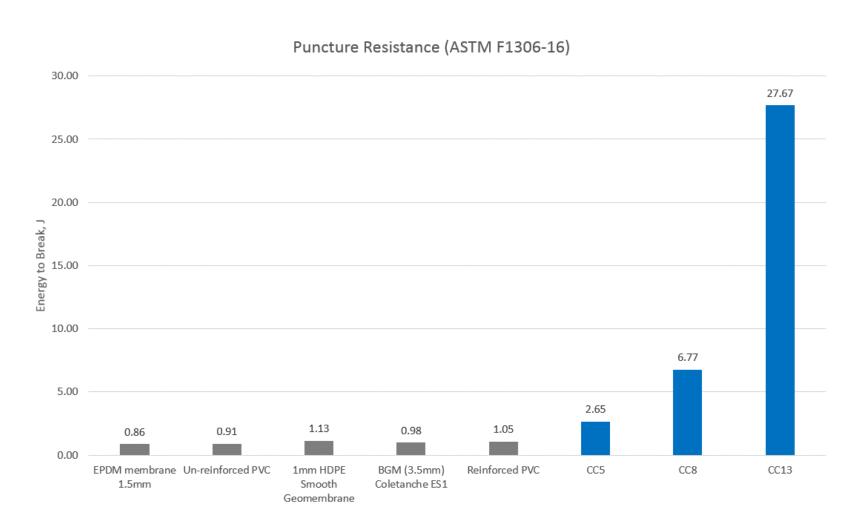
Three phases in failure:


- 1. Initial Elastic Phase
- 2. Incremental Rupture Phase
- 3. Final Rupture

Puncture Resistance (peak force)



Puncture Resistance (energy)

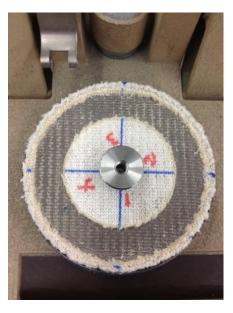


Puncture Resistance (energy)

Abrasion Resistance

Overview of Taber Abrasion

- Equipment: Taber 5150 Abraser
- Two H22 Abrasive wheels (coarse/high abrasion)
- 1000 g weights on each wheel
 - Estimate ~18 psi pressure at abrasion surface
- Resurface abrasive wheel with diamond tip every 500 cycles
- Measure change in mass and change in thickness versus number of cycles
- Testing similar to ASTM C-1353



Abrasion Resistance

500 Cycles

1500 Cycles

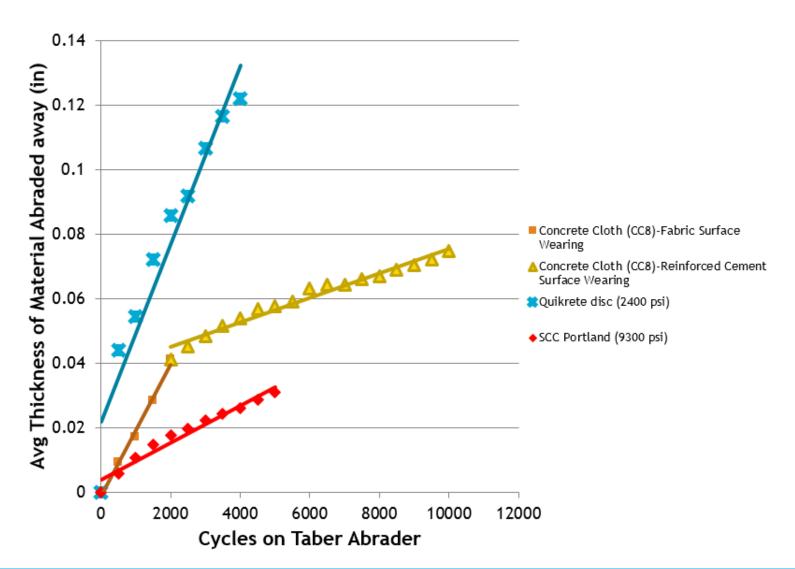
2000 Cycles

6500 Cycles

Abrasion Resistance

20Mpa (2300 psi) concrete, 4700 cycles

64Mpa (9300 psi) concrete, 5000 cycles


Concrete Canvas CC8, 6500 cycles

GCCMs have abrasion resistance similar to high compressive strength concrete, but will not fall apart (fiber reinforced) as it experiences wear.

Abrasion Resistance

Test method based on ASTM C1353:

"Test Method Using the Taber Abrader (Abrader) for Abrasion Resistance of Dimension Stone Subjected to Foot Traffic".

Durability (EN 12467)

Physical requirements and characteristics	Classification	Requirement	Result	
Apparent density: (set CC)	N/A	>1900 kg/m3	Pass	
Bending strength	Class 1	4-7MPa	Pass	
Water impermeability	Category A	Impermeable	Pass	
Warm water: (60 ± 2) °C	Category A	gory A (56 ± 2) days		
Durability requirements				
Soak-dry: 6hrs at (60 ± 5) °C drying & 18hrs immersed in water >5°C	Category A	50 cycles	Pass	
Freeze-thaw: 1-2hrs at (-20 ± 4) °C freezing & 1-2hrs immersed in water (20 ± 4) °C	Category A	100 cycles	Pass	
Heat-rain (2hrs 50mins ± 5 min water spray & 2hr 50mins ± 5 min radiant heat)	Category A	50 cycles	Pass	

Expected Life (UK climate)	Min 50 Years

Table 1. Comparison of tons of material used - GCCM vs conventional concrete*.

GCCM thickness	Roll width	Mass unset	Portable roll size		Bulk roll size (m2)			alternative kg/m3)		
(mm)	(m)	(kg/m2)	Length (m)	Area (m2)	Weight (kg)	Length (m)	Area (m2)	Weight (kg)	Concrete thickness (mm)	Weight of concrete (kg)
5.0	1.0	7.0	10	10	70	200	200	1,400	75	36,000
8.0	1.1	12.0	5	4.5	60	113	125	1,500	100	30,000
13.0	1.1	19.0	-			73	80	1,520	150	28,800

1 Bulk Roll

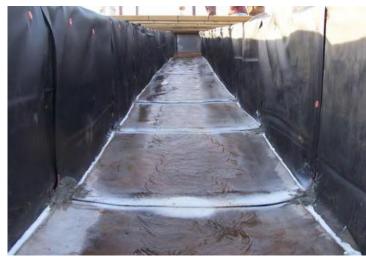
2 x 17T Ready-mix Trucks

CC PRODUCTION RATES / CAPACITY

Existing Capacity (Peak)				
CC5	380 Rolls/Month	76,000 sqm		
CC8	520 Rolls/Month	65,000 sqm		
CC13	740 Rolls/Month	59,200 sqm		

Sustained Capacity					
CC5	250 Rolls/Month	50,000 sqm			
CCH5	100 Rolls/Month	15,000 sqm			
CC8	180 Rolls/Month	22,500 sqm			
CCH8	100 Rolls/Month	10,000 sqm			
CC1348	Rolls/Month	3,200 sqm			

BS EN 12467:2004 'Fibre-cement flat sheets – Product specification and test methods'.


Physical requirements and characteristics	Classification	Requirement	Result
Apparent density: (set CC)	N/A	>1900 kg/m3	Pass
Bending strength	Class 1	4-7MPa	Pass
Water impermeability	Category A	Impermeable	Pass
Warm water: (60 ± 2) °C	Category A	(56 ± 2) days	Pass
Durability requirements			
Soak-dry: 6hrs at (60 ± 5) °C drying & 18hrs immersed in water >5°C	Category A	50 cycles	Pass
Freeze-thaw: 1-2hrs at (-20 ± 4) °C freezing & 1-2hrs immersed in water (20 ± 4) °C	Category A	100 cycles	Pass
Heat-rain (2hrs 50mins ± 5 min water spray & 2hr 50mins ± 5 min radiant heat)	Category A	50 cycles	Pass

Concrete Canvas during installation

Joints painted to assist with detecting movement

Weighting edges during initial 24-hour cure

Initial flow at 4psf

Test Setup: The intent of this testing was to measure the Manning's *n* using ASTM D6460 and a trapezoidal channel. The trapezoidal channel with low slope provides an accurate hydraulic radius and the least turbulent flow. It should be noted that the higher flow levels still were somewhat turbulent leading to varying flow depths and velocities from cross-section to cross-section. The channel was "calibrated" by lining it with polyethylene sheeting to create a very, very low friction condition to compare to. The Manning's n for this calibrated condition was 0.010.

Cross- Section	to channel bottom	to water	water depth, ft	area, ft2	velocity, ft/sec	R, ft	Q, cfs	Manning's
	686	647	0.13	0.29	7.35	0.11	2.12	0.011
	686	627	0.19	0.46	9.09	0.16	4.20	0.011
1	686	604	0.27	0.68	9.87	0.21	6.74	0.012
1 2 3 4 5 6	686	586	0.33	0.87	10.00	0.25	8.71	0.013
	787	751	0.12	0.26	7.10	0.10	1.88	0.010
2	787	739	0.16	0.36	8.79	0.13	3.20	0.010
2	787	724	0.21	0.50	10.06	0.17	5.02	0.010
	787	672	0.38	1.04	10.99	0.28	11.42	0.013
	645	614	0.10	0.22	7.13	0.09	1.60	0.009
2	645	597	0.16	0.36	8.05	0.13	2.93	0.011
3	645	577	0.22	0.55	10.35	0.18	5.65	0.010
	645	565	0.26	0.66	11.20	0.21	7.42	0.010
	690	645	0.15	0.34	7.01	0.13	2.38	0.012
4	690	633	0.19	0.44	7.59	0.16	3.37	0.013
4	690	606	0.28	0.70	9.32	0.22	6.55	0.013
	690	587	0.34	0.90	9.92	0.26	8.97	0.014
	605	582	0.08	0.16	7.03	0.07	1.14	0.008
5	605	565	0.13	0.30	8.99	0.11	2.67	0.009
3	605	555	0.16	0.38	10.14	0.14	3.87	0.009
5	605	532	0.24	0.59	10.98	0.19	6.52	0.010
	689	646	0.14	0.32	7.00	0.12	2.25	0.012
6	689	620	0.23	0.56	7.46	0.18	4.14	0.014
O	689	596	0.31	0.80	9.11	0.24	7.26	0.014
	689	589	0.33	0.87	10.01	0.25	8.72	0.013
	677	640	0.12	0.27	7.22	0.11	1.97	0.010
7	677	629	0.16	0.36	8.63	0.13	3.15	0.010
,	677	597	0.26	0.66	10.05	0.21	6.66	0.012
	677	568	0.36	0.97	10.40	0.27	10.10	0.013
	764	730	0.11	0.25	6.55	0.10	1.62	0.011
8	764	721	0.14	0.32	8.80	0.12	2.83	0.009
0	764	684	0.26	0.66	9.73	0.21	6.45	0.012
	764	684	0.26	0.66	9.59	0.21	6.36	0.012
		Avg Depth 1:	0.12			Avg N	fanning's n 1:	0.010
		Avg Depth 2:	0.17			Avg N	fanning's n 2:	0.011

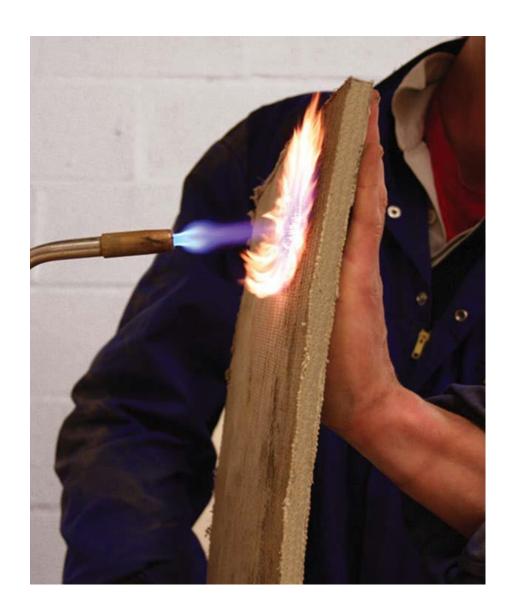
Avg Depth 1: 0.12 Avg Depth 2: 0.17 Avg Depth 3: 0.25 Avg Depth 4: 0.31 Avg Manning's n 1: 0.010 Avg Manning's n 2: 0.011 Avg Manning's n 3: 0.012 Avg Manning's n 4: 0.012 Overall
Average
Manning's n
0.011

CC MANNINGS TESTING

Completed Installation

Spraying Water to Hydrate Concrete Cloth

CC FIRE CERTIFICATION



Concrete Canvas has achieved the classification:

B-s1, d0

This classification is the highest possible for flammable materials and can be broken down as below.

В	The panels contribute little or insignificantly to fire.
s1	The panels contribute little or insignificantly to the development of smoke.
d0	The panels do not create flaming particles or droplets when subjected to fire.

CC CHEMICAL RESISTANCE

		CC5	CC8	CC13
Asid	Mean Strength (N)	56.9N	121.7N	326.3N
Acid	Retained Strength (%)	123%	172%	117%
A.I. I.	Mean Strength (N)	58.8N	96.9N	332.7N
Alkaline	Retained Strength (%)	138%	140%	116%
	Mean Strength (N)	64N	105N	396N
Hydrocarbon	Retained Strength (%)	115%	99%	103%

Concrete Canvas products showed no loss of flexural strength following chemical immersion.

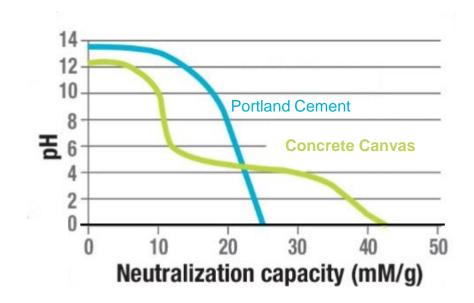
CC ROCK BACKFILL PROTECTION

Test: ASTM G13

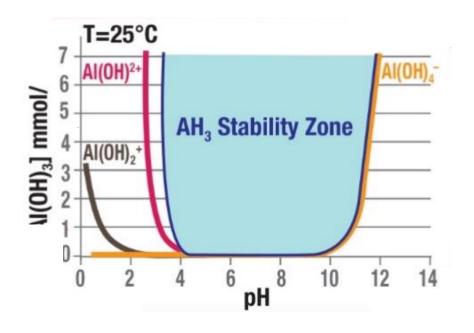
Grade: Concrete Canvas 13mm Standard Set Aggregate type: 50mm/2" Hard Limestone

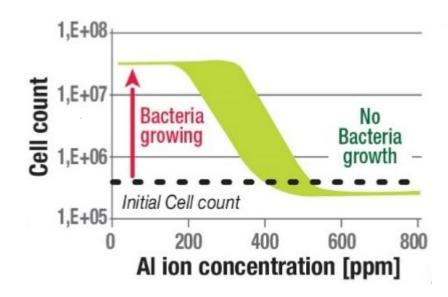
DATE of TEST: 25/26th February 2010

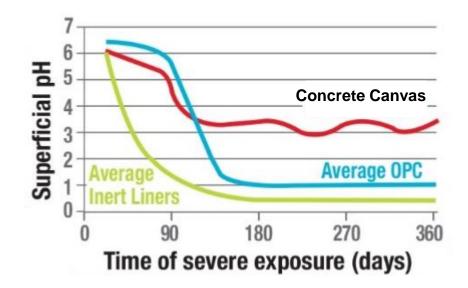
LOCATION of TEST: Saint Gobain PAM, UK PIPE TYPE: 6" dia expoxy coated steel pipe


TEMP.: 6 C (overnight 3 C)

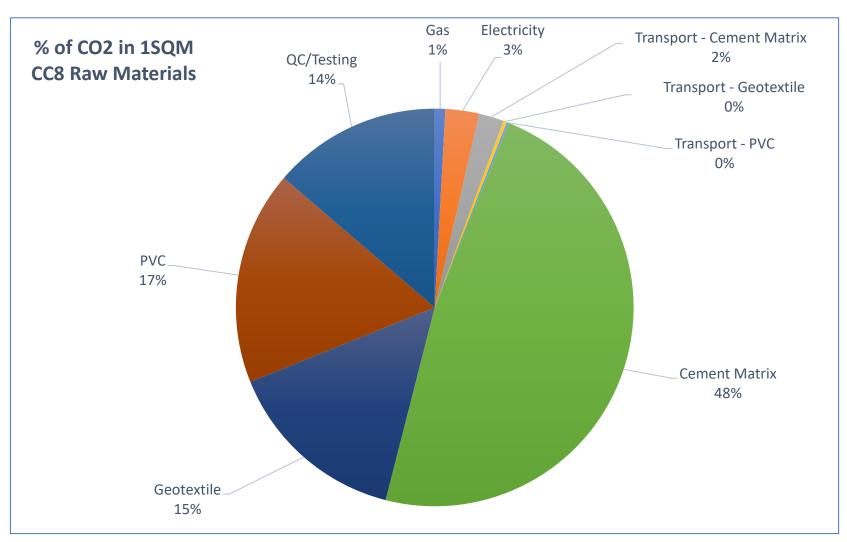
NO DAMAGE TO PIPE COATING


- Neutralisation Capacity
- AH3 Barrier
- Bacterio-Static Effect
- Stabilisation of pH around alumina solubility threshold


- Neutralisation Capacity
- AH3 Barrier
- Bacterio-Static Effect
- Stabilisation of pH around alumina solubility threshold


- Neutralisation Capacity
- AH3 Barrier
- Bacterio-Static Effect
- Stabilisation of pH around alumina solubility threshold

- Neutralisation Capacity
- AH3 Barrier
- Bacterio-Static Effect
- Stabilisation of pH around alumina solubility threshold



Concrete Canvas have carried out a Life Cycle Assessment to ISO14040 and prepared an Environmental Product

Declaration as per EN15804

 Life Cycle Analysis (LCA) for a square metre of each grade of CC and CC Hydro has been determined for product stage modules 'A1 to A3'
 raw material supply, transport of raw materials and manufacturing associated processes.

 The average values of the environmental impacts for the production of CC have been calculated on the basis of the 2016 annual production volumes.

RESULTS OF THE LCA – ENVIRONMENTAL IMPACT:

Parameter	Unit	1 Square Meter of Concrete Canvas ® CC5	1 Square Meter of Concrete Canvas ® CC8	1 Square Meter of Concrete Canvas ® CC13
Global warming potential (GWP)	Kg CO₂- Eq.	9.59	16.13	24.08

RESULTS OF THE LCA - RESOURCE USE:

Parameter	Unit	1 Square Meter of Concrete Canvas ® CC5	1 Square Meter of Concrete Canvas ® CC8	1 Square Meter of Concrete Canvas ® CC13
Total use of renewable primary energy resources	MJ	1	1.7	2.8
Total use of non-renewable primary energy resources*	MJ	1.6	2.8	4.6
Net use of fresh water	M^3	0	0	0

^{*} Methodology: CML - natural gas (38.84 MJ/m3) 8006-14-2 m3 ~ 38,84 MJ

Concrete Canvas Carbon Research

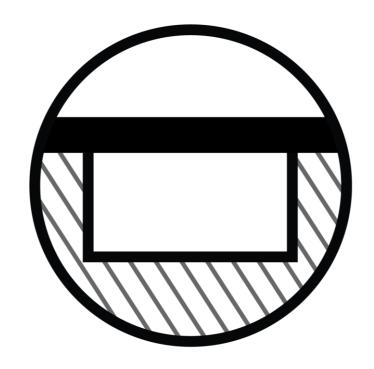
In order to determine the relevance of this data, consider replacing a typical 150mm poured concrete channel with CC8.
 C20 concrete Embodied Carbon data taken from the ICE database for construction materials:

ST4 , (C20/24 Mpa)	kg CO2 / kg	Concrete Density kg/m3	Weight of 150mm x 1Sqm	KG CO2/SQM
Total	0.100	2400	360	36.00

- 1sqm CC8 contains 16.13kg CO2/sqm, therefore when considering raw materials alone, a Concrete Canvas channel will contain 45% of the Embodied Carbon of a conventional concrete channel. **A saving of 55%.**
- This excludes carbon costs for the Construction Process Stage. Firstly, Transport. Assuming CC travels 100miles and Concrete only 20miles to a construction site:

Transport to Site Comparison	Tonnes	Miles	kg CO2e / Tonne/Mile Delivery	Tonne/Mile CO2	Kg CO2 / sqm
Concrete Full Load	17	20	0.161	54.74	0.44
Pallet of CC	1.6	100	0.161	25.76	0.21

- Based on this example, Concrete Canvas provides a 50% saving in transport carbon costs
- Construction Installation Process carbon costs also need to be considered. Concrete Canvas is typically 10 times faster to
 install than poured concrete so significant carbon savings are expected, but have not been included in this research due to
 the variable nature of installation processes



Prepare the substrate so that surfaces are well compacted, geotechnically stable with a smooth, uniform surface.

- For **soil** substrates, remove any vegetation, sharp or protruding rocks and fill any large void spaces. Ensure the CC makes direct contact with the substrate to minimise soil bridging or potential soil migration under the layer.
- For *concrete* substrates, remove any loose or friable material, cut away any protruding exposed re-bar and fill any large cracks or voids.

AVOID VOIDS

SECURE CC

Secure CC

It is important to ensure that the CC is **Jointed** at every overlap between layers and that those layers are **Fixed** to the substrate.

Jointing Layers

Overlapped CC layers should be securely jointed together, typically this is achieved using stainless steel screws applied with an auto-fed screw gun at regular intervals. Correct screw placement will help ensure intimate contact between CC layers, prevent washout of the substrate, and limit potential weed growth.

An adhesive sealant can be applied between the layers to improve the joint impermeability.

A non-penetrative method of jointing is to 'thermally bond' the CC layers together. This also improves joint impermeability. For more Jointing options see the CC Jointing and Fixing Guide.

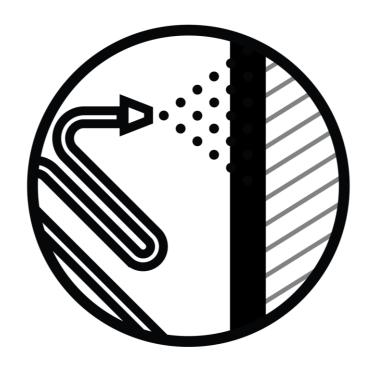
Fixing Layers

When fixing to a soil substrate, ground pegs (eg J-pegs) are typically used.

On rock or concrete substrates, CC layers can be jointed together and fixed to the substrate using masonry bolts, percussion anchors or shot fired masonry nails. Stainless steel fixings with washers are recommended.

PREVENT INGRESS

It is important to prevent water or wind ingress between the CC and the substrate, both around the perimeter of the installation and along the joints..


For **soil substrates**, this is typically achieved by capturing the entire perimeter edge of the CC within an anchor trench.

On **rocky or concrete substrates**, the perimeter edge should be sealed with a concrete fillet or an adhesive sealant.

All overlapped CC layers should be lapped in the direction of water flow.

HYDRATE FULLY It is critical to properly hydrate CC, taking into account the quantity of material used and ambient temperature conditions.

- Always ensure hydration through the fibrous top surface.
- Spray the fibre surface with water until it feels wet to touch for several minutes after hydration (the 'Thumb Test').
- Ensure to hydrate any overlapped areas and anchor trenched material prior to backfilling.

Follow the CC Hydration Guidelines.

LAGOON LINING

